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Figure 1. Limitations of Natural Language Instruction.

configurations, and metrics.

2. Limitations of Natural Language Instruc-
tion

Natural language instructions are common in human-robot
interaction but often pose challenges in tasks requiring pre-
cise spatial and contextual understanding. We present ex-
amples illustrating these challenges and demonstrate how
RoVI effectively addresses them.

Spatial Ambiguities. Natural language often lacks pre-
cision in conveying spatial relationships. For example:



Figure 2. Spatial VQA with GPT-4o: The experiment aims to eval-
uate VLM’s spatial reasoning capabilities via simple VQA tests
under RoVI compared to traditional language instructions. Re-
sults show that RoVI achieves a significantly higher success rate
than language-based instructions.

‘Move the silver pot from in front of the red can to next
to the blue towel at the front edge of the table.’ As shown
in Figure 1 instance (A), such descriptions are ambiguous;
phrases like ‘next to the blue towel’ and ‘front edge’ can be
interpreted in multiple ways, leading to errors. In contrast,
RoVI (A, right) provides explicit visual cues, such as arrows
indicating movement and placement, eliminating ambiguity
and ensuring accurate execution.

Object Identification Amid Similar Objects. Identify-
ing specific items among similar ones via natural language
is challenging. For example, ‘Pick up the cup’ in a dish-
washer filled with multiple glasses shown in Figure 1 in-
stance B2. This instruction is also vague, making it difficult
to select the correct cup. RoVI addresses this by overlay-
ing a circle symbol directly on the target object (B2, right),
providing an unambiguous reference and improving identi-
fication accuracy.

Complex Tasks and Task Decomposition. Conveying
complex tasks requiring domain knowledge is difficult with
language alone. For example: ‘Arrange the table.’ With-
out knowledge of the necessary steps (Figure 1 instance D),
the robot may perform the task incorrectly. RoVI mitigates
this by offering sequential visual cues for each subtask (D,
right), guiding the robot through the process, and reducing
reliance on prior knowledge.

Figure 3. Distribution of skills represented in the RoVI Book
dataset.

Figure 4. Dataset modified from Open-X Embodiment [2].

2.1. Spatial VQA Experiment
This experiment shown in Figure 2 — Robotic Spatial VQA
— aims to evaluate VLM’s spatial reasoning capabilities via
simple VQA tests under RoVI compared to traditional lan-
guage instructions. Compared to real-world experiments,
spatial VQA significantly reduces testing costs. To test our
hypothesis that in cluttered environments, real-life scenar-
ios, using only language as a medium to communicate with
robots is less efficient (verbose) and accurate (ambiguous)
compared to adding visual instructions, we design two types
of tasks: ‘choose’ and ‘move to’ under cluttered environ-
ment. Our conclusion is that visual instructions allow the
VLM to better understand the precise spatial locations in
tasks.

3. Datasets

To train a visual-language model, we curate a new dataset
and assign it as Dv . The corresponding equation can be
expressed as:

Each task observation includes two arrow styles, each



Figure 5. Default prompt in RoVI Book. The prompts in the RoVI
Book dataset are specifically designed as system-provided default
prompts. They are randomly integrated across samples within the
dataset.

with n paths, along with two default prompts and multiple
action sequences. We also show the ratios of each task in
Dv in Figure 3. Notably, our dataset is modified from Open-
X Embodiment [2] shown in Figure 4.

4. Zero-shot Learning
This section shows the structure of the system prompt
shown in Figure 6 which is used to provide VLMs in View
some initial knowledge. The design of the system prompt
follows the principle of chain-of-thought (CoT) reasoning.
It involves:
1. Positional Analysis of RoVI Symbols: Precisely inter-

preting the spatial positions and relationships of RoVI
components (starting point, waypoints, endpoint, and
center) to extract actionable insights.

2. Task Language Instruction Prediction: Generating
high-level language-formed task definitions for robotic
manipulation from visual cues.

Figure 6. System Default Prompt for off-the-shelf VLMs Zero-
Shot Learning and RoVI Book Data Generation.

3. Fine-Grained Planning: Decomposing tasks into de-
tailed, sequential plans to ensure clarity and precision in
execution.

4. Code Function Inference and Output: Translating
planning steps into executable Python code functions,
enabling direct control of the robotic system.

We also show the real outputs of VLMs in Figure 9 gen-
erated by LLaVA-13B (fine-tuned), which demonstrate that
RoVI is easy to understand and the RoVI Book is effective.
The details of LLaVA in VIEW are shown in Figure 8.

5. Challenges and Optimizations in the Design
Process

Challenges. During initial testing, we identify several
key issues leading to task misidentification when using
robotic visual instruction with arrow-based instructions for
the VLM:
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Figure 7. Visualization of post-process in our Keypoint Module.

1. The model often fails to correctly distinguish the arrow’s
direction, starting point, and endpoint.

2. Curved arrows cause confusion between rotational tasks
and curved ‘move to’ trajectories.

3. The VLM struggles with spatial orientation, frequently
confusing left and right.

4. The accuracy in recognizing the start and end points of
the arrow remains low, leading to incorrect semantic in-
terpretation of the arrow.

To address these issues:

1. For zero-shot learning, we implement Knowledge Aug-
mentation in prompt, and Geometric Enhancement
within the RoVI input space, effectively resolving issues
1, 2, and 4.

2. We designed and trained a keypoint module to address
issues 3 and 4 (see Section Keypoint Module ).

Knowledge Augmentation. We refine the default
prompt by enriching contextual information about arrows,
enabling better spatial semantic understanding in robotic
tasks. Adding detailed descriptions of the arrow’s appear-
ance and spatial semantics in the prompt:
The arrow includes the motion trajectory, with starting
and ending points of interaction with the target object.
For rotation tasks, it represents the extent and direction of
rotation.

The arrowhead typically has a sharp angle or triangular
shape, indicating the ‘pointed’ end, while the tail is wider
and straight or slightly curved, representing the ‘base’.

Geometric Enhancement. Decomposing the arrow into
easily recognizable geometric components with clear se-
mantic meanings. Simple shapes like triangles and circles
are more readily recognized by visual encoders due to their
distinct features and prevalence in pretraining datasets. Dif-
ferent visual designs are applied for ‘move to’ and ‘rotate’
tasks: in ‘move to’, a circle indicates the affordance loca-
tion; in ‘rotate’, it represents the rotation center. Empha-
sizing the geometric features of the arrow’s head and tail to
improve recognition:
The arrow’s endpoint is represented by a green triangle, and
a green circle at the starting point indicates where the grip-
per picks up the object.

6. Keypoint Post-process Details
In fact, the pure and trained YOLOv8 (Keypoint Module
fδ) in the main paper does not always exhibit stable per-
formance. However, due to its low latency capabilities, we
adopted it and devised an additional post-processing strat-
egy to enhance the Keypoint Module. Our design draws
inspiration from two observations.

The first observation is that Keypoint Module is suscepti-
ble to environmental disturbances. When the content of in-
put images X ∈ RH×W×3 is cluttered, the Keypoint Mod-
ule’s performance is adversely affected. The second obser-
vation is that Keypoint Module can only recognize green
RoVI symbols and fails to detect other colors. The reason
is that the color of most RoVI symbols is green in our key-
point training dataset. Thereby, Keypoint Module struggles
to extract keypoints in long-horizon tasks that contain mul-
tiple RoVI symbols in different colors.

To address these issues, we have designed two corre-
sponding methods. For the first issue, we simply trans-
form all pixels except for the RoVI color into white, akin
to the green screen. This allows the Keypoint Module to
focus solely on the pure RoVI symbols, thereby achieving
more robust performance. The second method is based on
the first. we separately transform the colors of different
step symbols into the first step color green. We then re-
peat the first method to eliminate other irrelevant content
colors. In this way, the vanilla Keypoint Module can be
more robust when facing different environments and divide
tough long-horizon tasks into multiple and simple single-
step tasks. To formalize the above process, we define two
functions: color-filter function Fc(X

′, colorj), and color-
transform function Tc(X

′).

Fc(X
′
i, colorj) =

{
X ′

i, if X ′
i == (colorj)

(255, 255, 255), else
, (1)

where colorj means the RoVI color of jth step in the cur-
rent task. X ′ means the combination of X and RoVI v,
X ′

i means the RGB value of each pixel in X ′, and i ∈
{1, ...,H ×W}.

Tc(X
′
i) =

{
X ′

i, ifX ′
i == (0, 255, 94)

(0, 255, 94), else
. (2)

Thus, for each step of keypoint extraction, the process can
be expressed as:

P j
{1,...,n} = fδ(Tc(Fc(X

′, colorj))). (3)

We take a two-step task as an example and visualize this
process in Figure 7.

7. Skill Definition and Execution Function
In our formulated policy, manipulation skills serve as the
primitives for implementing tasks, primarily consisting of



Figure 8. Overview of VIEW (LLava (RoVI Book)).

Figure 9. VLMs output example.

grasp, move, rotate, and lift. The execution function is a
code-based action that maps skills to corresponding Python
functions:

grasp (): The grasp module takes an RGB-D image as
input and generates multiple grasp pose candidates. Based
on the coordinates of the starting point, it selects the nearest
grasp pose e0.

move (): This function moves the end effector from the
starting point to the endpoint, sequentially passing through
defined waypoints. Motion planning is employed to com-
pute the optimal collision-free path between keypoints.

rotate (): After grasping, the target rotation angle is cal-
culated based on the angles between the vectors from the
center to the starting and ending points. The end effector
then performs the required rotation.

lift (): For pick-up tasks, after grasp (), the end effec-
tor moves a certain distance along the z-axis to lift the ob-
ject. In multi-step tasks, motion planning ensures collision
avoidance during transitions between steps.

Figure 10. Real-world environment setting.

8. Experiment Environment Setting

8.1. Real World Setting
To verify our framework could be applied to different set-
tings, we use two robotic arms both with two-finger grip-
pers for real-world experiments: UFACTORY X-Arm 6
and UR5. The details are shown in Figure 10.

In the X-Arm 6 real-world setting Figure 10 (a), two
calibrated RealSense D435 cameras are positioned for top-
down and third-person views with a resolution of 640 ×
480. Both robotic arms operate at a 20 Hz control frequency
with an end-effector delta control mode.

In the UR-5 real-world setting Figure 10 (b), we inves-
tigate this method using a single-arm platform, which con-
sists of a UR5 robotic arm mounted on a cabinet. At the end
of the arm, an OnRobot RG2 parallel gripper is attached.
An Intel RealSense L515 camera, with a resolution (color
aligned to depth) of 1280×720, is mounted on the ceiling
above the workspace to capture an overhead view. Another
D435i camera is positioned in the third-person view.

8.2. Simulation Setting
We use SAPIEN [9] as the simulator and SIMPLER [4] as
the base environment. We replace the background referred
to SIMPLER [4] with a ‘green screening’ approach to adapt
to the Octo [8], thus simulating the real-world scenario. We
choose the Google robot and Window-X for our agents. The
control process involves adjusting the arm’s position and
orientation with interpolation by a planner, combined with
controlling the gripper’s joint position.

9. Spatio-temporal Alignment

Metric. This explains the spatiotemporal scale used for
evaluation. The action video results were assessed by 20 hu-
man evaluators, who reported their perceived spatial align-
ment using a 6-point Likert scale. The scale is defined as
follows: 0 - Completely incorrect; 1 - Passed some parts
of the trajectory but did not reach the correct end state; 3



Figure 11. Spatio-temporal performance in in-the-wild experiments. The results of most samples show our methods’ superiority.

Figure 12. Spatio-temporal performance in SIMPLER. Results
also demonstrate the effectiveness of VIEW and RoVI.

- Successfully reached the end state with semantically cor-
rect but spatially inaccurate positioning; 4 - Successfully
reached the end state, which was mostly accurate, though
the trajectory was not precise; 5 - Successfully reached the
end state with an accurate trajectory. We show the visual-
ization of this process in Figure 13.

Result. We show the spatiotemporal alignment experi-
ment results in Figure 11 and Figure 12. The VIEW method
significantly outperforms language-instruction-based base-
lines in spatiotemporal performance, particularly in tasks
requiring spatial precision and distinguishing disturbances.
The largest performance gaps are observed in trajectory-
following tasks (e.g., real-1, real-5) and tasks involving
disturbances objects (e.g., real-4, sim-2). These results
highlight the limitations of language-conditioned policies,
which lack the capability to follow trajectories during mo-
tion and often fail to precisely satisfy spatial requirements
at the end state. Comparisons between Octo-language and
Octo-goal images show that goal images provide better spa-
tial alignment at the end state. However, due to the absence
of constraints during the motion process, their performance
is inferior to VIEW.

10. User Study
During the process of using a goal image as input in all
tasks, we faced significant challenges related to generat-
ing the goal image, which serves as a crucial input for the
model. This process involve manually setting objects in the
scene to the desired end state and capturing the input im-
age, which was not only time-consuming but also added
complexity to the user experience. When using language as

an instruction in cluttered environments, it becomes chal-
lenging to accurately describe which target object to select
amidst the distractions. Long and detailed descriptions are
often required to specify the location of the target. As a
result, in methods like RT-1 [1] and Octo [8], users spend
more time formulating precise language descriptions for the
target’s location. In contrast, RoVI offers a more user-
friendly and efficient experience; users simply need to circle
the selected object with a stylus, significantly reducing the
effort and time required for input.

11. Keypoint Module Ablation Experiments
11.1. Experimental Setup
Test Samples with RoVI. The experiment utilizes four test
images 1-4. The RoVI (arrows and circles) contains mul-
tiple keypoints. We show the visualizations of test image
details in Figure 14.

Model Configuration. Several representative grounding
models were evaluated:
• Grounding DINO [5]: SwinT backbone with OGC con-

figuration.
• OWL-ViT [6]: Base model with patch32 configuration.
• OWL-V2 [7]: Base model with patch16-ensemble con-

figuration.
• YOLOv8 (ours) [3]: Specialized detection model.

Text Prompts Multiple text prompts are designed for
the above open-vocabulary detection models (Grounding
DINO [5], OWL-ViT [6], and OWL-V2 [7]). Text prompts
include these aspects:
• RoVI-component-centric descriptions (e.g., ‘green arrow

tail’)
• Object-centric descriptions (e.g., ‘handle’, ‘squashed

coke can’, ‘red cup’, ‘yellow duck toy’)
We provide all the text prompts for each image in the

JSON format. The details are shown in Figure 15.

11.2. Evaluation Metrics
The experiment is conducted with 10 evaluation runs for
each model. The results are calculated by two metrics, Eu-
clidean Distance and mAP score. For the distance metric,



Figure 13. Evaluation Questionnaire: This interface is used to
evaluate the spatial-temporal alignment of the robot’s execution
compared to the provided visual instruction and reference goal.
Participants are tasked with rating the robot’s performance, where
they are randomly assigned different skills and environments. The
results of these evaluations are presented in this section 9.

1 2 3 4

Figure 14. Test samples adopted in the keypoint module ablation
study.

we calculate the predicted keypoint coordinates with the
ground-truth coordinates. For the bounding box output, we
adopt the center point coordinates. For the evaluation of
mAP scores, we defined that if the distance is less than 50,
the mAP will be 1. Otherwise, mAP will be 0. Finally, we
calculate the mean and standard deviation to assess perfor-
mance variability.

Euclidean Distance =
√
(xpred − xgt)2 + (ypred − ygt)2

(4)

Figure 15. Pesudo code of text prompts for each image. These
texts will be used to prompt open-vocabulary detection models.

mAP Score =

{
1.0 if distance < 50 pixels
0.0 otherwise

(5)

11.3. Limitations of open-vocabulary object detec-
tors

1. Applicable only to object-to-object tasks, as they rely
solely on object detection and cannot ground non-object
regions.

2. Unable to detect waypoints of trajectory.
3. Environmental objects and RoVI annotations interfere

with each other, reducing recognition accuracy.

12. Showcase
More detailed demonstrations of robotic manipulation sam-
ples are shown in Figure 16 and Figure 17. We also attach
video demonstrations in our supplementary zip file.
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